2023

CBN PCD

DINOX NC TOTAL TOOLING SYSTEM

CONTENTS

04 GLOBAL NETWOR	(S
-------------------------	----

- **06** How to indicate the model no. of insert (ISO)
- 08 cBN Spec
- 12 PCD Spec
- 14 cBN Features
- 18 cBN Heat-treat steel
- 24 cBN Cast iron

- **26** cBN Sinter Alloy
- **28** DNC100
- **29** DNC250
- **30** DNC300
- **31** DNC350
- **32** DB1000
- **33** DB2000
- **34** DB7000

- **35** DB7500
- **36** RA,GA Chip Breaker
- 37 cBN Technical data
- **41** cBN Edge treatment
- **45** cBN Re-grinding
- **46** PCD Chip Breaker(UC)
- 47 PCD Technical data

DINE GROUP GLOBAL DINE GROUP HEAD OFFICE **NETWORKS** DINE HEAD OFFICE / DINE FACTORY KOREA DINE HEAD OFFICE / DINE FACTORY KOREA WIDIN HEAD OFFICE / DSP/HEAD OFFICE KORLOY EUROPE DINE **SPAIN DINE THAILAND KORLOY INDIA DINE VIETNAM** WIDIN VIETNAM **DINE CHINA**

How to indicate the model no. of insert (ISO)

- d: Diameter of inscribed circle
- t: Insert thickness m: Refer to the figure

			(11111)			
Class	d	m	t			
А	±0.025	±0.005	±0.025			
С	±0.025	±0.013	±0.025			
Н	±0.013	±0.013	±0.025			
Е	±0.025	±0.025	±0.025			
G	±0.025	±0.025	±0.13			
J*	±0.05 ~ ±0.15	±0.005	±0.025			
K*	±0.05 ~ ±0.15	±0.013	±0.025			
L*	±0.05 ~ ±0.15	±0.025	±0.025			
M *	±0.05 ~ ±0.15	±0.08 ~ ±0.20	±0.13			
N *	±0.05 ~ ±0.15	±0.08 ~ ±0.18	±0.025			
U *	±0.08 ~ ±0.25	±0.13 ~ ±0.38	±0.13			

* Side is the one of the sintered parts

Tolerance definition of C, H, R, T, and W types of inscribed circle (Exceptions)

d	Tolera	nce of d	Tolerance of m						
u	J, K, L, M, N	U	M, N	U					
6.35	±0.05	±0.08	±0.08	±0.13					
9.525	±0.05	±0.08	±0.08	±0.13					
12.7	±0.08	±0.13	±0.13	±0.20					
15.875	±0.10	±0.18	±0.15	±0.27					
19.05	±0.10	±0.18	±0.15	±0.27					
25.4	±0.13	±0.25	±0.18	±0.38					

Tolerance definition of D-type inscribed circle (Exceptions)

d	Tolerance of d	Tolerance of m
6.35	±0.05	±0.11
9.525	±0.05	±0.11
12.7	±0.08	±0.15
15.875	±0.10	±0.18
19.05	±0.10	±0.18

F	N P	0
4 Cross-se	ectional shape G M 12 04	08 - VM
A	C'Sink 70° ~ 90°	C'Sink 70° ~ 90°
F	G	C'Sink 70° ~ 90°
C'Sink 70° ~ 90°	M	N
C'Sink 40° ~ 60°	R	C'Sink 40° ~ 60°
C'Sink 40° ~ 60°	C'Sink 40° ~ 60°	Special design and asymmetric insert

How to indicate the model no. of insert (ISO)

12 04 80 **GA** Cutting edge length, **Cutting edge height** Nose "r" size Chip breaker Inscribed circle diameter

_ Cuttir	ng edge length	, Inscribed circ	le diameter					
5 Cuttin	N G M <mark>1</mark> 2	04 08	- GA					() small symbols
			Sym	bols				
C	d	S		R	V	W	Inch	IC
			Symbols					d(mm)
03	04	03	06	03	-	02	1.2(5)	3.97
04	05	04	08	04	08	S3	1.5(6)	4.76
05	06	05	09	05	09	03	1.8(7)	5.56
	-	-	-	06	-	-	-	6.00
06	07	06	11	06	11	04	2	6.35
- 80	09	07	13	07	13	05	2.5	7.94
- 00	- 11	- 00	- 1/	08	- 1/	- 0/	-	8.00
09	11	09	16	09	16	06	3	9.525
11	13	<u>-</u> 11	 19	10	19	07	3.5	10.00
	- 13		17 -	12	17		3.3	12.00
12	15	12	22	12	22	08	4	12.70
14	17	14	24	14	24	09	4.5	14.29
16	19	15	27	15	27	10	5	15.875
-	-	-	-	16	-	-	-	16.00
17	21	17	30	17	30	11	5.5	17.46
19	23	19	33	19	33	13	6	19.05
-	-	-	-	20	-	-		20.00
22	27	22	38	22	38	15	7	22.225
-	-	-	-	25	-	-		25.00
25	31	25	44	25	44	17	8	25.40
32	38	31	54	31	54	21	10	31.75
	-	-	-	32	-	-	-	32.00

Jyli	ibot	11030								
Metric	I nch	M, N	I nch							
01	1(2)	1.59	1/16							
T0	1.125	1.79	9/128							
T1	1.2	1.98	5/64							
02	1.5(3)	2.38	3/32							
T2	1.75	2.78	7/64							
03	2	3.18	1/8							
T3	2.5	3.97	5/32							
04	3	4.76	3/16							
05	3.5	5.56	7/32							
06	4	6.35	1/4							
07	5	7.94	5/16							
09	6	9.52	3/8							
11	7	11.11	7/16							
12	8	12.70	1/2							
		·	() small symbols							

	C+	ماد
	2010	nck

						(Grad	е						mm					
Drawing	Designation	DNC100	DNC250	DNC300	DNC350	DNC400	DB1000	DB2000	DBN250	DBN350	DBN700A	DBNX20	W (Weight)	S (cutting edge length)	IC (inscribed circle)	T (Thickness)	R (Nose R)	ØD (hole diameter)	
	2NU-CNGA120404	•	•	•		-	•	-	_	-	•	-	9.9	2.7	12.7	4.76	0.4	5.16	
	2NU-CNGA120404F	-	•	-	•	-	-	-	-	-	-	-	9.9	2.7	12.7	4.76	0.4	5.16	
	2NU-CNGA120404T	-	•	-	•	_	•	-	-	-	-	-	9.9	2.7	12.7	4.76	0.4	5.16	
	2NU-CNGA120404W	-	•	-	-	-	-	-	-	-	-	-	9.9	2.7	12.7	4.76	0.4	5.16	
	2NU-CNGA120404WF	-	•	-	-	-	-	-	-	-	-	-	9.9	2.7	12.7	4.76	0.4	5.16	
	2NU-CNGA120408	•	•	•		-	•	•	-	-	•	-	9.9	2.6	12.7	4.76	0.8	5.16	
IC TO	2NU-CNGA120408F	-	•	-	•	-			-	-	-	-	9.9	2.6	12.7	4.76	8.0	5.16	
	2NU-CNGA120408T	-		-		-	•		-	-	-	-	9.9	2.6	12.7	4.76	8.0	5.16	
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	2NU-CNGA120408W	-	•	-		-	•		-	-	•	-	9.9	2.6	12.7	4.76	8.0	5.16	
	2NU-CNGA120408WF	-	-	-	-	-	-	•	-	-	-	-	9.9	2.6	12.7	4.76	8.0	5.16	
n I I I	2NU-CNGA120412					-	-	-	-	-	-	-	9.9	2.6	12.7	4.76	1.2	5.16	
	2NU-CNGA120412F	-		-		-	-	-	-	-	-	-	9.9	2.6	12.7	4.76	1 . 2	5.16	
	2NU-CNGA120412T	-		-		-	-	-	-	-	-	-	9.9	2.6	12.7	4.76	1.2	5.16	
	2NU-CNGA120412W	-		-	-	-	-	-	-	-		-	9.9	2.6	12.7	4.76	1.2	5.16	
	2NU-CNGA120412WT	-	-	-	-	-		-	-	-	-	-	9.9	2.6	12.7	4.76	1.2	5.16	
	T-2NU-CNGA120404	-		-	-	-	-	-	-	-	-	-	9.9	2.7	12.7	4.76	0.4	5.16	
	T-2NU-CNGA120408	-		_		_	-	-	-	_	-	-	9.9	2.6	12.7	4.76	8.0	5.16	
IC PARTY	4NU-CNGA120404	-		-	-	-	-	-	-	-	-	-	9.9	2.7	12.7	4.76	0.4	5.16	
	4NU-CNGA120408	-		-		-	-	-	-	-	-	-	9.9	2.6	12.7	4.76	8.0	5.16	
R ØD	4NU-CNGA120412	-	•	-	-	_	-	-	-	-	-	-	9.9	2.6	12.7	4.76	1.2	5.16	
3	2NILL DNICA1E0/0/											_	10.0	27	10.7	/ 7/	0 /	E 1/	
	2NU-DNGA150404	-				-	-			-	-	-	12.3	2.6	12.7 12.7	4.76 4.76	0.4	5.16	
	2NU-DNGA150404F	-		-		-	-	-	-	-	-		12.3			4.76	0.4	5.16	
	2NU-DNGA150404T	-		-		-	-	-	-	-	-	-	12 . 3	2.6	12.7 12.7	4.76	0.4	5.16 5.16	
IC P	2NU-DNGA150408	-				_	-	_		_	_	-	12.3	2.2	12.7	4.76			
ØD	2NU-DNGA150408F	-		-					-			-	12.3		12.7		0.8	5.16	
	2NU-DNGA150408T	-		-		-	-	-	-	-	-	_		2.2		4.76	0.8	5.16	
R	2NU-DNGA150412 2NU-DNGA150412F	-		-		-	•	-	-	-	-	-	12 . 3	2.5	12.7 12.7	4.76 4.76	1.2	5.16 5.16	
	2NU-DNGA150412F	-		-		-	-		-	-	-	-	12.3	2.5	12.7	4.76	1.2	5.16	
	2NU-DNGA150604	-		-		-	-	-	-	-	-	_	15.4	2.5	12.7	6.35	0.4	5.16	
	2NU-DNGA150604 2NU-DNGA150608			-		-	-	-	-	_	-	_	15.4	2.5	12.7	6.35	0.4	5.16	
	4NU-DNGA150404	-		_		_	_	_		_	_	_	12.3	1.8	12.7	4.76	0.8	5.16	
IC Y	4NU-DNGA150408	-					-	-	-		_		12.3	2.9	12.7	4.76	0.4	5.16	
ØD I	4NU-DNGA150408	-	6	-		_	_	_		_	_	-	12.3	3	12.7	4.76	1.2	5.16	
	4NU-DNGA150412	_		_		_	_	_		_	_	_	15.4	2.9	12.7	6.35	0.8	5.16	
R I		_					_	_			_						0,0		
IC~	4NU-SNGA120404	-		-	-	-	-	-	-	-		-	9.9	3.1	12.7	4.76	0.4	5.16	
ØD	4NU-SNGA120408	-		-	-	-	-	-	-	-		-	9.9	3.1	12.7	4.76	8.0	5.16	
R																			
	3NU-TNGA160404	-	•	-	•	-	•	•	•	-	•	-	7.2	2.5	9.53	4.76	0.4	3.81	
△ > ■□	3NU-TNGA160404T	-	•	-	_	-	-	-	-	-	-	-	7.2	2.5	9.53	4.76	0.4	3.81	
IC ØD	3NU-TNGA160408	_	•	-	•	_	_	-	_	-	•	-	7.2	2.3	9.53	4.76		3.81	
	3NU-TNGA160408F	-	•	-	-	_	-	-	_	-	-	-	7.2	2.3	9.53	4.76	0.8	3.81	
R	3NU-TNGA160408T	_	•	_	_	_	_	_	_	_	_	_	7.2	2.3	9.53	4.76		3.81	
 ← 	3NU-TNGA160412	-	-	-	•	-	-	-	-	-	-	-	7.2	2.0	9.53	4.76	1.2	3.81	

.:: T-2NII I-		$\wedge \wedge \wedge \wedge$	model no	nackado	unit is 10 EA.
-:X: I=ZINU=	-	\vee \vee \vee \vee	/ model no	. Dackade	Unit is to EA.

		to	

						(Frad	е					mm					
Drawing	Designation	DNC100	DNC250	DNC300	DNC350	DNC400	DB1000	DB2000	DBN250	DBN350	DBN700A	DBNX20	W (Weight)	S (cutting edge length)	IC (inscribed circle)	T (Thickness)	R (Nose R)	ØD (hole diameter)
	2NU-VNGA160404	•	•		•	-	-	-	•	-	•	-	10.2	3.5	9.53	4.76	0.4	3.81
IC .	2NU-VNGA160404F	-	•	-		-	-	-	-	-	-	-	10.2	3.5	9.53	4.76	0.4	3.81
The same of the sa	2NU-VNGA160404T	-		-		-	-	-	-	-	-	-	10.2	3.5	9.53	4.76	0.4	3.81
	2NU-VNGA160408					-				-		-	10.2	2.6	9.53	4.76	8.0	3.81
R	2NU-VNGA160408F	-	•	_		-	-	-	_	_	-	-	10.2	2.6	9.53	4.76	8.0	3.81
3	2NU-VNGA160408T	-		-		-	-		-	-	-	-	10.2	2.6	9.53	4.76	8.0	3.81
	T-2NU-VNGA160408	-	•	_	-	-	•	-	_	_	-	-	10.2	2.6	9.53	4.76	8.0	3.81
	2NU-CCGW060202	-		-	-	-	-	-	-	-	-	-	0.9	2.8	6.35	2.38	0.2	2.8
10	2NU-CCGW060202T	-	•	_	-	-	-	-	_		-	-	0.9	2.8	6.35	2.38	0.2	2.8
	2NU-CCGW060204	-		-	-	-	-		-	-	-	-	0.9	2.7	6.35	2.38	0.4	2.8
	2NU-CCGW060204F	-	•	-	-	-	-	-	-	-	-	-	0.9	2.7	6.35	2.38	0.4	2.8
	2NU-CCGW060204T	-	•	-	-	-	-	-	-	-	-	-	0.9	2.7	6.35	2.38	0.4	2.8
ØD	2NU-CCGW060208	-	-	-	-	-	•	-	-	-	-	-	0.9	2.6	6.35	2.38	8.0	2.8
	2NU-CCGW09T302	-		-	-	-	-	-	-	-	-	-	4.6	2.7	9.53	3.97	0.2	4.4
R' Las	2NU-CCGW09T304	•		-	•	-	•	-		-	•	-	4.6	2.7	9.53	3.97	0.4	4.4
	2NU-CCGW09T304T	-		-	-	-	-	-	-	-	-	-	4.6	2.7	9.53	3.97	0.4	4.4
	2NU-CCGW09T308	•	•	-		-	-	•		-		-	4.6	2.6	9.53	3.97	8.0	4.4
	2NU-CCGW09T308T	-	•	-	-	-	-	-	-	-	-	-	4.6	2.6	9.53	3.97	8.0	4.4
	2NU-CCGW09T308W	-	•	-	-	-	-	-	-	-	-	-	4.6	2.6	9.53	3.97	8.0	4.4
	2NU-DCGW070204	-	•	-	-	-		-	-	-	-	-	1.3	2.6	6.35	2.38	0.4	2.8
	2NU-DCGW070208	-	•	-	-	-	-	-	-	-	-	-	1.3	2.2	6.35	2.38	8.0	2.8
	2NU-DCGW070208T	-	-	-	-	-		-	-	-	-	-	1.3	2.2	6.35	2.38	8.0	2.8
IC V	2NU-DCGW11T302	-	•	-	-	-	-	-	-	-	-	-	4.8	2.6	9.53	3.97	0.2	4.4
	2NU-DCGW11T304			-		-		-		-	-	-	4.8	2.6	9.53	3.97	0.4	4.4
	2NU-DCGW11T304F	-		-	-	-	-	-	-	-	-	-	4.8	2.6	9.53	3.97	0.8	4.4
R' L	2NU-DCGW11T304T	-		-	-	-	-	-	-	-	-	-	4.8	2.6	9.53	3.97	0.4	4.4
-	2NU-DCGW11T308			-		-	-	-		-		-	4.8	2.2	9.53	3.97	8.0	4.4
	2NU-DCGW11T308T	-		-	-	-	-	-	-	-	-	-	4.8	2.2	9.53	3.97	0.8	4.4
	T-2NU-DCGW11T304	-		-	-	-	-	-	-	-	-	-	4.8	2.6	9.53	3.97	0.4	4.4
	T-2NU-DCGW11T308	-		-		-	-	-	-	-	-	-	-	- 2 F	-	- 0.00	-	-
`	3NU-TCGW090204	-		-	-	-	-	-	-	-	-	-	0.9	2.5	5.56	2.38	0.4	2.5
5	3NU-TCGW090204F	-		-	-	-	-	-	-	-	-	-	0.9	2.5	5.56	2.38	0.4	2.5
IC ØD	3NU-TCGW090204T	-		-	-	-	-	-	-	-	-	-	0.9	2.5	5.56	2.38	0.4	2.5
R																		
 1 																		
	3NU-TPGW110304	-		_		_				_		-	2.3	2.5	6.35	3.18	0.4	3.4
> -	3NU-TPGW110304F	-	•	-	-	_	-	-	_	_	-	_	2.3	2.5		3.18	0.4	3.4
IC H	3NU-TPGW110304T	-	•	_	_	_	_	_	_	_	_	_	2.3	2.5	_	3.18	0.4	3.4
**************************************	3NU-TPGW110308	-	•	_		-				_		-	2.3	2.3		3.18	0.8	3.4
R P	3NU-TPGW110308F	-	•	_	-	_	-	-	_	_	-	_	2.3	2.3		3.18	0.8	3.4
S T	3NU-TPGW110308T	-	•	_	_	_	-	-	_	-	_	-	2.3	2.3		3.18	0.8	3.4
	3NU-TPGN110308	-	-	_	_	_	•	•	_	_	-	-	2.3	2.3	_	3.18	0.8	-
	3NU-TPGN160304	-	•	-	-	_	-	-	_	_	-	-	4.8	2.5		3.18	0.4	_
IC	3NU-TPGN160308	-	•	_	-	_	_	_	_	_	_	-	4.8	2.3	9.53		0.8	_
													.,-					
R																		
H I																		
				_														

lacksquare : Stock igtriangle : Will be discontinued

						(Grad	е						mm				
Drawing	Designation	DNC100	DNC250	DNC300	DNC350	DNC400	DB1000	DB2000	DBN250	DBN350	DBN700A	DBNX20	W (Weight)	S (cutting edge length)	IC (inscribed circle)	T (Thickness)	R (Nose R)	ØD (hole diameter)
	3NU-TPGB110304	-	0	-	_	-	-	-	0	-	-	-	2.0	2.5	6 . 35	3.18	0.4	3.4
🔊 🗈	3NU-TPGB110304T	-	0	-	-	-	-	-	-	-	-	-	2.0	2.5	6 . 35	3.18	0.4	3.4
IC POD	3NU-TPGB110308	-	0	-	-	-	-	-	-	-		-	2.0	2.3	6.35	3.18	8.0	3.4
	3NU-TPGB110308F	-	0	-	-	-	-	-	-	-	-	-	2.0	2.3	6.35	3.18	8.0	3.4
R T	3NU-TPGB110308T	-	0	-	-	-	-	_	-	-	-	-	2.0	2.3	6.35	3.18	8.0	3.4
R S T	2NU-VBGW160402	-		-		-	-	-	-	-	-	-	8.6	3.5	9.53	4.76	0.2	4.4
	2NU-VBGW160404	•	•	-	•	-	•	-		-		-	8.6	3.5	9.53	4.76	0.4	4.4
	2NU-VBGW160404F	-	•	-	-	-	-	-	-	-	-	-	8.6	3.5	9.53	4.76	0.4	4.4
	2NU-VBGW160404T	-	•	-	-	-	-	-	-	-	-	-	8.6	3.5	9.53	4.76	0.4	4.4
	2NU-VBGW160408		•	-		-	-			-	_	-	8.6	2.6	9.53	4.76	8.0	4.4
	2NU-VBGW160408F	-	•	-	-	-	-	-	-	-	-	-	8.6	2.6	9.53	4.76	8.0	4.4
	2NU-VBGW160408T	-		-	-	-	-	-	-	-	_	-	8.6	2.6	9.53	4.76	8.0	4.4
	T-2NU-VBGW160408	-	-	-	•	-	-	-	-	-	-	-	8.6	2.6	9.53	4.76	0.8	4.4
R S	2NU-VCGW160404	-		-		-	-	-	-	-	-	-	8.6	3.5	9.53	4.76	0.4	4.4
	2NU-VCGW160404F	-		-	-	-	-	-	-	-	-	-	8.6	3.5	9.53	4.76	0.4	4.4
	2NU-VCGW160404T	-		-	-	-	-	-	-	-	-	-	8.6	3.5	9.53	4.76	0.4	4.4
	2NU-VCGW160408	-		-	-	-	-	-	-	-	-	-	8.6	2.6	9.53	4.76	8.0	4.4
	2NU-VCGW160408F	-		-	-	-	-	-	-	-	-	-	8.6	2.6	9.53	4.76	8.0	4.4
	2NU-VCGW160408T	-	•	-	-	-	•	•	-	-	-	-	8.6	2.6	9.53	4.76	8.0	4.4
	T-2NU-VCGW160404	-		-	-	-	-	-	-	-	_	-	8.6	3.5	9.53	4.76	0.4	4.4
	T-2NU-VCGW160408	-		-	-	-	-	-	-	-	_	_	8.6	2.6	9.53	4.76	0.8	4.4
S R	CNMA120404	-	-	-	-	-	-	-		-	-	-	9.89	4.5	12.7	4.76	0.4	5.16
	CNMA120408	-	-	_	-	-	-	-		-	-		9.89	4.5	12.7	4.76	8.0	5.16
₹ØD	T-CNMA120408	-	-	-	-	-	-	-		-	-	-	9.89	4.5	12.7	4.76	8.0	5.16
T	DNIMAA1FO/O/												10.0	0.7	10.7	/ 7/	0.7	Г 1 /
IC. R	DNMA150404	-	-	-	-	-	-	-		-	-	-	12.2	3.7	12.7	4.76	0.4	5.16
I ØD	DNMA150408	-	-	-	-	-	-	-			-	-	12.2	3.4	12.7	4.76	8.0	5.16
- R \	TNMA160404	_	_	_	_								7.2	3.7	9.53	4.76	0.4	3.81
↓ III	TNMA160404	_	_	-	_	_	-	-		-	_	_	7.2	3.7	9.53	4.76	0.4	3.81
IC ØD	1111MA 100400	_	_	_			_	_					7.2	3.3	7.33	4.70	0.0	3.01
	T-VNMA160404	_	-	_	-	_	_	-		-			10.2	4.9	9.53	4.76	0.4	3.81
IC. R	VNMA160404	_	_	_	_	_	_	_		_	_	_	10.2	5.8	9.53	4.76	0.4	3.81
■ In Indian	VNMA160408	_	_	_	_	_	_	-		_	_		10.2	5.8	9.53	4.76	0.8	3.81
	111111111111111111111111111111111111111												10.2	0.0	7.00	7.70	0.0	3.51
→																		
	CCMW09T304	_	-	-	-	-	-	-		-	_	_	4.5	4.3	9.53	3.97	0.4	4.4
IC PR															7.00	0.,,		
I -4 																		

: Stock	○ : Will be discontinued.
- JOCK	. VVIII DE DISCONTINUED

						(Grad	е								mm		
Drawing	Designation	DNC100	DNC250	DNC300	DNC350	DNC400	DB1000	DB2000	DBN250	DBN350	DBN700A	DBNX20	W (Weight)	S (cutting edge length)	IC (inscribed circle)	T (Thickness)	R (Nose R)	ØD (hole diameter)
	DCGW11T308	-	-	_	-	-	-	-	•	-	-	-	4.8	3.2	9.53	3.97	8,0	4.4
	T-DCGW11T308	-	-	-	-	-	-	-		-	-	-	4.8	3.2	9.53	3.97	8.0	4.4
IC P P P P P P P P P P P P P P P P P P P																		
	170,0000												0.1	0.5	0.50		0 /	
S R	VBMW160404 VBMW160408	-	-	-	-	-	-	-	•	-	-	-	8.6	3.5	9.53 9.53	4.76 4.76	0.4	4.4
ØD																		
	4NS-CNGA120408	-	-	-	-	0	-	-	-	-	-	-	9.7	3	12.7	4.76	0.8	5.16
IC ØD	4NS-CNGA120412	_	_	_	_	0	-	_	_	_	-	-	9.7	2.9	12.7	4.76	1.2	5.16
	4NS-DNGA150408				_	0	_	_	_	_	_	_	15.1	2.83	12.7	6.35	0.8	5.16
IC Typ. x 4	4NS-DNGA150412				-	0	-	-	-	-	-	-	15.1	2.46	12.7	6.35	1.2	5.16
R S																		
	T-TPGW110304 TPGW110304				-	-	-	-	-		-	-	2.0	3.7		3.18 3.18		3.4
IC P ØD	TPGW110308				-	-	-	-	•	-	-	-	2.0	3.7		3.18	0.8	3.4

PCD Spec PCD Insert (Negative/positive)

	Stock	
	ALC UCK	

		Grade				mm		
			至	gt.	peq		~	
Drawing	Designation	20	W (Weight)	ıtting	ıscril e)	kne	R (Nose R)	hole neter
		DP150	<u>≥</u> >	S (cutting edge length)	IC (inscribed circle)	T (Thickness)	Ž	ØD (hole diameter)
	CNMM120404	•	9.9	4.3	12.7	4.76	0.4	5.16
D.	CNMM120408	•	9.9	4.2	12.7	4.76	0.8	5.16
IC R								
	CCMW120404	•	9.8	4.3	12.7	4.76	0.4	5.16
s <u>R</u>								
IC								
l l								
	DNMM150404	•	12.2	3.5	12.7	4.76	0.4	5.16
S	DNMM150408	•	12.2	3.2	12.7	4.76	0.8	5.16
IC P P P P P P P P P P P P P P P P P P P								
	CCMT060202	•	0.9	2.8	6.35	2,38	0.2	2.8
S I ▼► I B	CCMT060204	•	0.9	2.7	6.35	2.38	0.4	2.8
IC TO THE PART OF	CCMT09T304	•	3.4	4.3	9.53	3.97	0.4	4.4
ØD	CCMT09T308	•	3.4	4.2	9.53	3.97	0.8	4.4
4 								
	DCMT070202	•	1.2	3.7	6.35	2.38	0.2	2.8
 S 	DCMT070204	•	1.2	3.5	6.35	2.38	0.4	2.8
IC TO	DCMT11T302 DCMT11T304	•	4.5 4.5	3.5 3.5	9.53 9.53	3.97 3.97	0.2 0.4	4.4
T OD	DCMT11T308	•	4.5	3.2	9.53	3.97	0.8	4.4
	20		.,,0	3,2	7,00	5177	5,5	
I								
			, -	0 -	0 ==	0		
IC. S R	DCGT11T304	•	4.5	3.5	9.53	3.97	0.4	4.4
₹øD								
T								

PCD Spec PCD Insert (Negative/positive)

●: Stock ○: Will be discontinued

		Grade				mm		
Drawing	Designation	DP150	W (Weight)	S (cutting edge length)	IC (inscribed circle)	T (Thickness)	R (Nose R)	ØD (hole diameter)
	TD014/00000/							
	TPGW080204 TPGW090204	•	0.6 0.8	3.2	6.35 5.56	2.38 2.38	0.4 0.4	2.4 2.5
R s	TPGW090208	0	0.8	3.2	5.56	2.38	0.8	2.5
IC OD	TPGW110304		1.4	3.7	6.35	3.18	0.4	3.4
	TPGW110308		1.4	3.5	6.35	3.18	0.8	3.4
	11 044110000		1,44	0.0	0.00	3.10	0.0	0.4
1								
	VBMT110304		2.5	5.8	6.35	3.18	0.4	3.4
IC S R	VBMT110308	•	2.5	4.9	6.35	3.18	0.8	3.4
	VBMT160404	•	8.6	5.8	9.53	4.76	0.4	4.4
and the second s	VBMT160408	•	8.6	4.9	9.53	4.76	8.0	4.4
	VCMT110304	•	2.4	5.8	6.35	3,18	0.4	3.4
T	VCMT110308		2.4	4.9	6.35	3.18	8.0	3.4
	VBGW160404	•	8.6	5.8	12.7	4.76	0.4	4.4
IC S								
	VCMT160404	•	8.3	5.8	9.53	4.76	0.4	4.4
	VCMT160404 VCMT160408		8.3	4.9	9.53	4.76	0.8	4.4
S	VOI-11 100400		0.0	4.7	7.55	4.70	0.0	4.4
·								
	TPGN110304	•	1.9	3.7	6.35	3.18	0.4	-
R v	TPGN110308	•	1.9	3.5	6.35	3.18	0.8	-
s In								
IC P								
' 								
·								
	SPGN090304		3.6	4.1	9.53	3,18	0.4	_
9	JI JI10/0004		J.0	4,1	7.00	5,10	0.4	
IC S R								
, T								

Features

DINOX cBN features very excellent hardness and thermal resistance by adding special ceramic bonding material to cBN, its main ingredient, and sintering them at an ultrahigh-pressure high temperature. It also provides optimal conditions for productivity improvement through high-speed processing of cast iron and heattreated steel due to its excellent strength and wear resistance.

High accuracy

Wear resistance

Productivity improvement

cBN Type

Re-polishing type	One-use type	Multi-comer type	Multi-corner type (coating)	NS Type	NT Type
	>	•		0	•

Re-grinding type

- Stable and long tool life
- Excellent wear resistance, high hardness
- 3~4 time re-polishing is possible, which reduces tool expenses

e.g.) CNGA120408

Multi-corner type (coated/non-coated)

- Simple corner management
- Strong welding surface
- · Possible to create an effect of several cBNs with one insert

Coated cBN

Non-coated

e.g.) 2NU-CNGA120408

NS, NT Type

NS Type

- Specialized high cutting depth
- Excellent machining performance in spite of variable cutting depth

e.g.) 4NS-CNGA120408

NT Type

- High cutting depth versus general brazing type
- Economical cBN

e.g.) 2NT-CNGA120408

Applications by grade and textural characteristics

Textural characteristics	Texture	cBN content	Grade name	Workpiece, Applications	Features
Mostly cBN particles combine by themselves		High	DB7000 DB7500	Cemented carbide alloy, chilled cast iron, Ni-hard cast iron, Iron metal sintered alloy, heat-resistant alloy, cast iron	 High cBN content and texture where cBN particles strongly combine by themselves Suitable for cutting machining of high-hardness materials such as cast iron, heat-resistant alloy, Cemented carbide alloy, etc.
Mostly cBN particles combine by means of bonding material		Low	DB1000, DB2000, DBN250,DBN350, DBN500 DBNX20 DBNX25 DNC100,DNC250, DNC300 DNC350,DNC400	Alloy steel, titanium steel, carbon tool steel, bearing steel, dice steel, ductile cast iron	cBN particles strongly combine by special ceramic bonding material Features excellent wear resistance and tenacity in cutting heat-treated steel due to its high cBN retention capacity

Grade map

		18.1			
Workpiece	Туре	High-speed continuous	Continuous	Low/medium interrupted	High interrupted
	Usage classification	H01	H10	H20	H30
		DNO	C100		
	Coated cBN		DNC250	NEW NEW	
	334134 3211			DNC300	
Heat-treat steel				DNO	0350
		DB1	1000		
	Non-coated cBN		DB2000		
				DBNX20	DBNX25
	Usage classification	1	10	20	30
	Usage classification	l l	10	20	30
Sinter		DB7500			
Alloy	Non-coated cBN		DB'	7000	
	Usage classification	K01	K10	K20	K30
		n.p.	N500		
Cast iron	Non-coated cBN	DDI	DB7000		
Cast iron	Non coated con			S800	
			BBIT	3000	
	Usage classification	S01	S10	S20	S30
S					
Difficult-to-cut materials	Non-coated cBN	DB7	7000		
materiais			DBN	S800	

Coating information

Characteristics

Classification	Grade	Texture	Binder	cBN content (%)	Grain size (μm)	Hardness HV (Gpa)
	DNC100		TiN	50 - 55	2	31 - 34
	DNC250	4.	TiC	65 - 70	6	32 - 34
Heat-treat steel Coating	DNC300		TiN	65 - 70	4	29 - 31
	DNC350		TiN	60 - 65	1	33 - 35
	DNC400		TiN	65	3	-

Coated thin-film characteristics

Non-coating information

\circ				
(:h	ara	cte	2nc	stics

Classification	Grade	Texture	Binder	cBN content (%)	Grain size (μm)	Hardness HV (Gpa)
	DB1000		TiCN	40 - 45	1	27 - 31
	DB2000		TiN	50 - 55	2	31 - 34
Heat-treat steel	DBNX20		TiN	55 - 60	3	31 - 33
Heat-treat steel	DBNX25		TiN	65 - 70	4	29 - 31
	DBN250		TiN	50 - 55	2	31 - 34
	DBN350		TiN	60 - 65	1	33 - 35
Sinter	DB7000		CO compound	90 - 95	2	41 - 44
Alloy	DB7500		CO compound	90 - 95	1	41 - 44
	DBN500		TiC	65 - 70	6	32 - 34
Cast iron	DBNS800		Al compound	85 - 90	8	39 - 42
	DB7000		CO compound	90 - 95	2	41 - 44
S	DBNS800		Al compound	85 - 90	8	39 - 42
Difficult-to-out materials	DB7000		CO compound	90 - 95	2	41 - 44

cBN Heat-treat steel H

Features and cutting conditions of cBN grade

Grade			Cutting conditions								
Classification	Coated or noncoated	Name	Insert color	Applications	0	Cutting s	peed V		in) 250 300	Feed f(mm/rev)	Cutting depth ap(mm)
		DNC100	Dark brown	For high-speed, continuous cutting			180		300	0.03 -0.30	0.03 -0.30
		DNC250	Gold	For continuous, low interrupted cutting		120		2	220	0.05 -0.30	0.05 -0.30
	Coated	DNC300	Dark brown	For low/medium interrupted cutting		90			250	0.05 -0.20	0.05 -0.25
		DNC350	Dark brown	For medium/high interrupted cutting			0.05 -0.30	0.05 -0.50			
		DNC400	Gold	For low/medium interrupted cutting		80	80 200	l	0.05 -0.30	0.05 -0.50	
Heat-treat		DBNX20		For high efficiency cutting		120	15	50		0.03 -0.30	0.03 -0.50
steel		DBNX25		For high-speed interrupted cutting		1	50	200	1	0.03 -0.30	0.03 -0.50
	Non-	DBN250		For low/medium interrupted cutting		80	120			0.03 -0.20	0.03 -0.30
	coated	DBN350		For high interrupted cutting		80	110			0.03 -0.20	0.03 -0.30
		DB1000		For high-speed, continuous cutting		130			250	0.03 -0.15	0.03 -0.20
		DB2000		For low/medium interrupted cutting		80		200	l	0.03 -0.20	0.03 -0.30

Comparison of coated and non-coated cBNs

Machining information

Vc(m/min)	f(mm/rev)	ap(mm)	No. of machining ops.	Cutting distance	Workpiece	Heat treated	Hardness	Size
200	0.1	0.1	20 times	6km	SCM415 round rod	Carburizing heat treatment	58~62	Ø105*150

Wear loss (coating superior)

Surface roughness (non-coating superior)

Surface roughness						
Grade	8 times	12 times	20 times			
Non-coated cBN	Ra 0 <u>.</u> 431	Ra 0.477	Ra 0.492			
Coated cBN	Ra 0.579	Ra 0.631	Ra 0.792			

cBN Heat-treat steel Hand

Applicable area

- Coated cBN: Suitable for all heat-treated steel machining as it is excellent in high-speed high-efficiency machining
- · Non-coated cBN: Suitable for machining of high-hardness heat-treated steel or parts to which cutting speed is limited

Series	Usable area
Coated cBN	Ideal for heat-treated steel machining Machining requiring high speed and high precision Machining requiring high efficiency such as carburized layer removal
Uncoated cBN	 Small parts not requiring high cutting speed Machining materials including much hard particles such as mold parts Applicable even in case of an unstable machine setup

Coated cBN

Non-coated cBN

Recommended Machining Works

Width decision groove machining

Outer diameter boring

Inner diameter(curved surface) boring

Cross-sectional machining

Dice steel

cBN Heat-treat steel H

Example of coated grades machining

Machining example

DNC250 TEST RESULT

Grade	DNC250	Third-party cBN	
INSERTS	2NU-DNGA150408		
Parts name (workpiece)	H6 Swash plat	e (FCD55 Plate)	
Vc(m/min)			
f(mm/rev)	0.06		
ap(mm)	0.05 - 0.10		
Dry/wet cutting	Wet cutting		

DNC250 TEST RESULT

Grade	DNC250	Third-party cBN	
INSERTS	3NU-TNGA160408		
Parts name (workpiece)	Shaft UD Brak	ke(SCR420HB)	
Vc(m/min)	160		
f(mm/rev)	0.08		
ap(mm)	0.425		
Dry/wet cutting	Wet cutting		

DNC250 TEST RESULT

Grade	DNC250	Third-party cBN	
INSERTS	2NU-VCGW160408		
Parts name (workpiece)	ce) Trans driver gear (SCM422)		
Vc(m/min)	90		
f(mm/rev)	0.15		
ap(mm)	0.15		
Dry/wet cutting	Wet cutting		

DNC250 TEST RESULT

Grade	DNC250	Third-party cBN	
INSERTS	INSERTS 2NU-VNGA160408		
Parts name (workpiece)	CLUTCH BOD'	Y(SCr420 8903)	
Vc(m/min)	140		
f(mm/rev)	0.12		
ap(mm)	0.025/0.075		
Dry/wet cutting	Wet cutting		

DNC350 TEST RESULT

Grade	DNC350	Third-party cBN	
INSERTS	2NU-CNGA120408		
Parts name (workpiece)	arts name (workpiece) Anulus Gear(SCR420)		
Vc(m/min)	200		
f(mm/rev)	- 0.08		
ap(mm)	0.4		
Dry/wet cutting	Wet cutting		

DNC350 TEST RESULT

Grade	DNC350	Third-party cBN	
INSERTS	INSERTS 2NU-CNGA120404		
Parts name (workpiece)	Retainer(S	APH440-P)	
Vc(m/min)	150		
f(mm/rev)	0.2		
ap(mm)	0.10-0.20		
Dry/wet cutting	Wet cutting		

cBN Heat-treat steel Heat-treat

Example of uncoated grades machining

Machining example

DB1000 TEST RESULT

Grade	DB1000	Third-party cBN	
INSERTS	NU-TPGW110304		
Parts name (workpiece)	Inner diameter boring machining (SUJ2		
Vc(m/min)	120		
f(mm/rev)	06		
ap(mm)	0.2		
Dry/wet cutting	Wet cutting		

DB1000 TEST RESULT

Grade	DB1000	Third-party cBN	
INSERTS	2NU-CNGA120408		
Parts name (workpiece)			
Vc(m/min)	282		
f(mm/rev)	0.1		
ap(mm)	0.1		
Dry/wet cutting	Wet cutting		

DB1000 TEST RESULT

Grade	DB1000	Third-party cBN
INSERTS	2NU-CNGA120412-W	
Parts name (workpiece)	Reactor	
Vc(m/min)	210	
f(mm/rev)	0.15	
ap(mm)	0.23	
Dry/wet cutting	Wet cutting	

DB2000 TEST RESULT

Grade	DB2000	Third-party cBN
INSERTS	2NU-DNGA150408	
Parts name (workpiece)	Poly slide (SCM415H CVT)	
Vc(m/min)	150	
f(mm/rev)	0.1	
ap(mm)	0.2	
Dry/wet cutting	Wet cutting	

DB2000 TEST RESULT

Grade	DB2000	Third-party cBN
INSERTS	2NU-DNGA150408	
Parts name (workpiece)	Plunger (SKD11)	
Vc(m/min)	100	
f(mm/rev)	0.03 - 0.25	
ap(mm)	0.04	
Dry/wet cutting	Wet cutting	

DB2000 TEST RESULT

Grade	DB2000	Third-party cBN
INSERTS	NU-TPGW110308	
Parts name (workpiece)	Clutch parts (SCM415H)	
Vc(m/min)	135	
f(mm/rev)	0.08	
ap(mm)	0.15	
Dry/wet cutting	Wet cutting	

cBN Heat-treat steel H

Example of uncoated grades machining

Machining example

DBNX20 TEST RESULT

Grade	DBNX20	Third-party cBN
INSERTS	VBMW160412	
Parts name (workpiece)	BH-RR Outer wheel	
Vc(m/min)	130	
f(mm/rev)	0.1	
ap(mm)	0.2	
Dry/wet cutting	Wet cutting	

DBNX20 TEST RESULT

Grade	DBNX20	Third-party cBN
INSERTS	2NU-CNGA120408	
Parts name (workpiece)	Reactor	
Vc(m/min)	221~248	
f(mm/rev)	0.1	
ap(mm)	0.2	
Dry/wet cutting	Wet cutting	

DBNX20 TEST RESULT

Grade	DBNX20	Third-party cBN
INSERTS	2NU-DNGA150612	
Parts name (workpiece)	Transmission(STB2)	
Vc(m/min)	137	
f(mm/rev)	0.18-0.20	
ap(mm)	0.08-0.10	
Dry/wet cutting	Wet cutting	

DBNX20 TEST RESULT

Grade	DBNX20	Third-party cBN
INSERTS	NU-TNMA160408	
Parts name (workpiece)	Flange(HrC62 SCM415)	
Vc(m/min)	150	
f(mm/rev)	0.1	
ap(mm)	0.12	
Dry/wet cutting	Wet cutting	

DBNX20 TEST RESULT

Grade	DBNX20	Third-party cBN
INSERTS	CNMA120408	
Parts name (workpiece)	Chain Sprocket(sintered alloy)	
Vc(m/min)	200	
f(mm/rev)	0.1	
ap(mm)	0.1	
Drv/wet cutting		

DBNX20 TEST RESULT

Grade	DBNX20	Third-party cBN
INSERTS	2NU-DNGA150412	
Parts name (workpiece)	Beering outer wheel(S55 CR)	
Vc(m/min)	190	
f(mm/rev)	0.15	
ap(mm)	0.2	
Dry/wet cutting		

cBN Heat-treat steel Heat-treat

Example of uncoated grades machining

Machining example

DBNX25 TEST RESULT

Grade	DBNX25	Third-party cBN
INSERTS	2NU-CNGA120412-W	
Parts name (workpiece)	Reactor	
Vc(m/min)	200~220	
f(mm/rev)	0.12~0.16	
ap(mm)	0.12~0.16	
Dry/wet cutting	Wet cutting	

DBNX25 TEST RESULT

Grade	DBNX25	Third-party cBN
INSERTS	NU-TNMA160408	
Parts name (workpiece)	Gear (HrC60 SCM420)	
Vc(m/min)	150	
f(mm/rev)	0.12	
ap(mm)	0.2	
Dry/wet cutting	Wet cutting	

DBN250 TEST RESULT

Grade	DBN250	Third-party cBN	
INSERTS	3NU-TP0	B110308	
Parts name (workpiece)	Sproket Crank Shaft(SCM415)		
Vc(m/min)	120-180		
f(mm/rev)	0.18		
ap(mm) 0.12		12	
Dry/wet cutting Wet cutting		utting	

DBN350 TEST RESULT

Grade	DBN350	Third-party cBN	
INSERTS	NU-CNN	1A120412	
Parts name (workpiece)	Gear shaft (SCR420H)		
Vc(m/min)	125		
f(mm/rev)	0.15		
ap(mm)	ap(mm) 0.3		
Dry/wet cutting	Met cutting		

cBN Cast iron Kastiron

Features and cutting conditions of cBN grade

Applications	Workpiece	Grade	Cutting speed Vc(m/min) 100 500 1000 1500 2000	Feed f(mm/rev)	Cutting depth ap(mm)
		DBNS800	200 2000	0.1 ~ 1.0	≤4 . 0
	Gray cast iron	DBN500	200 700	0.1 ~ 0.5	≤1 <u>.</u> 0
		DB7000	500 2000	0.1 ~ 0.5	≤1 . 0
Turning	Alloy cast iron	DBNS800	200 1000	0.1 ~ 0.8	≤2.0
		DBN500	100 350	0.1 ~ 0.4	≤0.5
	Ductile cast iron	DB1000	250 500	0.1 ~ 0.2	≤0.2
		DB7000	80 200	0.1 ~ 0.4	≤0.5
Milling	Gray cast	DBN700	800 2000	0.1 ~ 0.5	≤0.5
Milling	iron	DBNS800	800 2000	0.1 ~ 1.0	≤4.0

Applicable area

Gray cast iron

Ductile cast iron

cBN Cast iron Kastiron

cBN grade features

Classification	Grade Classification Coated or Name		Insert color	Applications	Features
	DBN700		High-speed cutting of FC / cutting of milling of FC, cutting of iron metal heattreated parts cutting of high-hardness roll / cutting of heat-resistant ally	Grades whose material strength and thermal conductivity are improved by greatly increasing cBN content and optimizing sintered tissues	
K		DBN500	0	FC, FCD cutting, high-hardness VSR cutting, high- hardness roll grinding cutting	For cast iron cutting, cBN sintered body formation is optimized and wear resistance and damage resistance are excellent
Cast iron	Uncoated	DB7000		Foundry machining	For cast-iron difficult-to-cut materials machining, wear resistance and damage resistance are excellent
		DBNS800		Large cutting depth machining, high-precision grinding machining	The solid structure capable to be used cutting knife of entire insert, which responds brazing type machining and high-speed grinding unlike conventional brazing type

Machining example

DBN500 TEST RESULT

Grade	DBN500	Third-party cBN	
INSERTS	SPGN	090308	
Parts name (workpiece)	Crank bore(FC250 = FCD450 Inner boring)		
Vc(m/min)	150		
f(mm/rev)	0.15		
ap(mm)	0.5		
Dry/wet cutting	Wet cutting		

DBN500 TEST RESULT

Grade	DBN500	Third-party cBN	
INSERTS	CNMA	120412	
Parts name (workpiece)	Compressor Comp(FC250 facing, Interrupted)		
Vc(m/min)	400		
f(mm/rev)	0.07		
ap(mm)	0.15		
Dry/wet cutting	Wet cutting		

DBN500 : under 0.8μm, Ceramics : over 1.5μm

DBN700 TEST RESULT

Grade	DBN700	Third-party cBN	
Oraue	DDIA700	Trill u-party CDIN	
INSERTS	Speci	al Bite	
Parts name (workpiece)	VSR intake(Hv250-330 Plunge Cutting)		
Vc(m/min)	95		
f(mm/rev)	0.08		
ap(mm)	0.2		
Dry/wet cutting	Dry cutting		

DBN700 TEST RESULT

Grade	DBN700	Third-party cBN	
INSERTS	SPGN090308 / TNGA150408		
Parts name (workpiece)	Fly wheel(FC300 facing)		
Vc(m/min)	600		
f(mm/rev)	0.15		
ap(mm)	ap(mm) 0.2		
Dry/wet cutting	Wet cutting		

cBN Sinter Alloy Sinter Alloy

Features and cutting conditions of cBN grade

* First recommended

	Grade		Insert			
Classification	Coated or Name uncoated	Name	color	Applications	Features	
Sinter Alloy Uncoated	DB7000		High density heat treated parts	Features excellent wear resistance and damage resistance in sintered alloy machining to stably implement a long service life		
	Uncoated	DB7500*		High density heat treated parts	Suitable for sintered alloy grinding machining by maintaining the best cutting taste	

		Cutting conditions						
Workpiece	Grade	100	Cutting	speed Vc(I	m/min) ²⁵⁰	300 '	Feed f(mm/rev)	Cutting depth ap(mm)
0 1:1 1 11	DB7000	80				300	0.1 ~ 0.3	≤0.25
General sintered alloy	DB7500*	80				300	0.1 ~ 0.15	≤0.25

		Cutting conditions						
Workpiece	Grade	100	Cutting speed Vc(m/min) 150 200 250 300	Feed f(mm/rev)	Cutting depth ap(mm)			
High-density heattreated	DB7000	80	200	0.1 ~ 0.3	≤0.2			
sintered alloy	DB7500*	80	200	0.1 ~ 0.15	≤0.2			

Applicable area

General sintered alloy

High-density heat-treated sintered alloy

% The details may vary according to machining environments.

cBN Sinter Alloy

cBN cutting performance

Comparison of cutting performance by tool materials

Workpiece Equivalent to SMF4040		
Details of machining	High interrupted cross-sectional machining with a groove, hole Ø80-Ø100 (after 40 pass machining)	
Tool model no.	TNGA160404 / DB7000	
Cutting conditions	f=0.1mm/rev.ap=0.1mm, wet cutting	

General sintered alloy up to Vc=100m/min can be machined even in the case of cemented carbide alloy or cermet. But after about Vc=120m/min it is rapidly worn so surface roughness is weakened and burr is expanded. On the contrary, cBN ensures reliable machining as it is excellent in surface roughness in high-speed areas, wear resistance, and burr inhibition.

Valve seat ring (VSR)

VSR is divided into VSR for Intake (IN) and VSR for Exhaust (EX). Generally, VSR for EX is of high hardness.

Recommended grade

	Gasoline engine VSR material	Diesel engine VSR material
Flange cutting	DB7000 DBN350	DB7000 DBN350
Traverse cutting	DB7000 DBN500	DB7000 DBN500
Workpiece hardness (HV)	Low ◀ HV300 ▶ High	Low ◀ HV300 ► High

Recommendation conditions

Cutting speed	Feed	Cutting depth
Vc(m/min)	f(mm/rev)	ap(mm)
50~100	0.03~0.2	0.05~0.5

Cutting example

The tool service life was increased more than two fold versus conventional one when machining with DB7000 whose damage resistance is excellent.

Recommendation conditions

Workpiece	Sintered alloy (150-250HV)
Details of machining	VSR(IN) 45-face grinding machining
Tool model no.	TBGN060104(DB7000)
Cutting conditions	Vc=100m/min, f=0.08mm/rev, wet cutting

* The details may vary according to machining environments.

Coated cBN

Features

- Grade first recommended of high-speed continuous machining
- High heat resistance with high oxidation temperature
- Thin film applied with high hardness and high resistance to oxidation and chipping

Grade	Texture	Binder	cBN content (%)	Grain size (μm)	Hardness HV (Gpa)
DNC100		TiN	50 - 55	2	31 - 34

Performance comparison test

Wear resistance comparison test in high-speed machining

Cutting conditions

Insert model no.	2NU-CNGA120408		
Test holder	DCLNL2525-M12		
Workpiece	SCM415 (58~62HrC)		
Machining speed	300m/min		
Feed	0.1mm/rev		
Depth of cutting	0.1mm		
Dry/wet cutting	Dry cutting		

Applicable area

Recommended Cutting Conditions

- Improved wear resistance and oxidation resistance with highdardness thin film adopted
- Significantly improved resistance to chipping, fracture, and wear

Cutting Speed VC (m/min)	180		300
Feed f(mm/rev)	0.03	0.3	
Single cutting depth D.O.C ap (mm)	0.03	0.3	

Coated cBN

Features

- Grade first recommended for continuous machining
- General-purpose cBN that enables machining ranging from Continuous cutting to Low interrupted cutting by PVD coating application
- Wear resistance improved

Grade	Texture	Binder	cBN content (%)		Hardness HV (Gpa)
DNC250		TiC	65 - 70	4	32 - 34

Machining example

Grade	DNC250	Third-party cBN	
INSERTS	3NU-TNGA160408		
Parts name (workpiece)	Shaft UD Brake(SCR420HB)		
Vc(m/min)	160		
f(mm/rev)	0.08		
ap(mm)	0.425		
Dry/wet cutting	Wet cutting		

Grade DNC250 Third-pa		Third-party cBN	
INSERTS	2NU-CNGA120408		
Parts name (workpiece)	Hardness : HrC40~50(SCM92 0HVS I)		
Vc(m/min)	280		
f(mm/rev)	0.08-0.15		
ap(mm)	0.2		
Dry/wet cutting	Wet cutting		

Applicable area

Recommended Cutting Conditions

Cutting Speed VC (m/min)		120	220	
Feed f(mm/rev)	0.05	0.3		
Single cutting depth D.O.C ap (mm)	0.05	0.3		

Non-coating	Coating
400000	
	M. T.
<i>y</i>	

 $\ensuremath{\ensuremath{\%}}$ The details may vary according to machining environments.

Coated cBN

Features

- Grade first recommended for machining ranging from Low interrupted to Medium interrupted
- Improved resistance to chipping and wear versus rival products
- Minimized coating peeling due to its stable coating

Grade	Texture	Binder	cBN content (%)		Hardness HV (Gpa)
DNC300		TiN	65 - 70	4	29 - 31

Performance comparison

[Interrupted] V90 F0.1 D0.1 / SCR420H(HrC58~62) / DRy (4PATH =0.21KM)]

[Outer dia. interrupted] V120 F0.1 D0.1 / 9PATH

DNC300		Company A cBN	
KT VB		KT	VB
	-	1	
	THE PARTY OF		

Superior performance due to less VB wear loss of DNC 300

Machining example

Grade	DNC300	Company A cBN	Company B cBN			
INSERTS		CNGA120408				
Parts name (workpiece)	Heat-treated steel (HrC57.8)					
Vc(m/min)	160					
f(mm/rev)	0.08					
ap(mm)		0.2~0.3				
Dry/wet cutting		Wet cutting				

Applicable area

Recommended Cutting Conditions

- Wear resistance and oxidation resistance are improved with high-hardnedd thin film adopted
- · Significantly improved resistance to chipping, fracture, and wear

Cutting Speed VC (m/min)		90		200	
Feed f(mm/rev)	0.05	0.	3		
Single cutting depth D.O.C ap (mm)	0.05	0.	25		

* The details may vary according to machining environments.

Coated cBN

Features

- Grade first recommended for interrupted cutting
- Maintains functionality and precision for a long time due to its advanced coating technology
- Economical due to its longer service life

Grade	Texture	Binder	cBN content (%)		Hardness HV (Gpa)
DNC350		TiN	60 - 65	1	33 - 35

Machining example

Grade	DNC350	Third-party cBN	
INSERTS	2NU-CNGA120408		
Parts name (workpiece)	SCM415(HrC58~60)		
Vc(m/min)	120		
f(mm/rev)	0	.1	
ap(mm)	0.1		
Dry/wet cutting	Dry cutting		

Applicable area

Recommended Cutting Conditions

% The details may vary according to machining environments.

Uncoated cBN

Features

- Grade for high-speed machining with the best wear resistance among non-coated cBNs
- Features an excellent tool service life in the continuous cutting ~ Low interrupted cutting
- Focuses on wear resistance and improves fracture resistance
- Improves heat resistance and strength by high-purity TiCN ceramic bonding materials

	Grade	Texture	Binder	cBN content (%)		Hardness HV (Gpa)
•	DB1000		TiCN	40 - 45	1	27 - 31

Newly developed high-purity ceramic bonding material

Conventional grade

Impurities included in conventional grade ceramic bonding materials decreased the strength and heat resistance of sintered parts, becoming the cause of crack (fracture) and wear.

DB1000

DB1000 enhanced heat resistance and strong tenacity by reducing impurities to the very limit using the newly developed high-purity ceramic bonding

Cutting performance

Dimension accuracy comparison (continuous cutting)

Applicable area

Machining precision

Wear resistance (continuous cutting)

Recommended Cutting Conditions

* Cutting oil: Continuous cutting dry/wet, Interrupted cutting dry

* The details may vary according to machining environments.

Uncoated cBN

Features

- General-purpose grade that responds to overall heattreated steel - Realizes a stable tool service life ranging from continuous cutting to Low / Medium interrupted cutting
- Highly compatible with fracture resistance and wear resistance - Both properties greatly improved by the use of the highpurity ceramic bonding material
- Achieves a stable surface roughness based on edgesharpening performance

Grade	Texture	Binder	cBN content (%)		Hardness HV (Gpa)
DB2000		TiN	50 - 55	2	31 - 34

Newly developed high-purity ceramic bonding material

Conventional grade

Impurities included in conventional grade ceramic bonding materials decreased the strength and heat resistance of sintered parts, becoming the cause of cracks (fracture) and wear.

DB2000

DB2000 realizes enhanced heat resistance and strong tenacity by reducing impurities to the very limit using the newly developed high-purity ceramic

Cutting performance

Wear resistance (continuous cutting)

Applicable area

Machining precision

Surface roughness comparison (continuous cutting)

Recommended Cutting Conditions

Cutting Speed VC (m/min)		80		200
Feed f(mm/rev)	0.03		0.2	
Single cutting depth D.O.C ap (mm)	0.03		0.3	

* Cutting oil: Continuous cutting dry/wet, Interrupted cutting dry

% The details may vary according to machining environments.

Uncoated cBN

Features

- Ideal for high-speed grinding machining of cast iron
- Suppresses heat crack and realizes excellent damage resistance by highspeed machining of gray cast iron
- Realizes highly efficient sintered alloy machining
- Provides a stably longer service life in case of machining of sintered alloys with diverse shape hardness by meeting the requirements for cutting edge treated products of high standard+2 types
- Responds to various difficult-to-cut materials
- Features high performance for difficult—to—cut materials such as rolls, highspeed tools, and heat resistant alloys, etc.

Grade	Texture	Binder	cBN content (%)	Grain size (μm)	Hardness HV (Gpa)
DB7000		CO Compound	90 - 95	2	41 - 44

Tissue that acidized cBN sintered parts

cBN for third-party cast iron

More holes

by the elution of bonding materials due to acidizing

Holes generated

Provides an excellent damage resistance and an enhanced inter–cBN particle coherence by sintering intermediate particle cBNs in high density to realize the best content Ensures a long service life and stable machining in highspeed grinding of hard–to–cut materials of cast iron sintered alloys

Cutting performance

Cast iron milling machining

Cast iron turning machining

Cast iron turning machining

Recommended cutting edge treatment

※ The details may vary according to machining environments.

Uncoated cBN

Features

- Ideal for grinding machining of sintered alloys
- Realizes excellent surface roughness and machined surface
- · Various shapes of sintered parts can cutting by various cutting edge treatment
- Provides burr inhibition and machining precision improvement by F type that focuses on cutting taste designed for sintered alloy machining to meet grade requirements; Features stable resistance to chipping by cutting edge reinforced T type even in case of interrupted grinding machining

Grade	Texture	Binder	cBN content (%)	Grain size (μm)	Hardness HV (Gpa)
DB7500		CO Compound	90 - 95	1	41 - 44

Cutting performance

Workpiece: Equivalent to iron metal sintered alloy SMF4040 (70HRB, continuous machining) Old cutting: 2NU-CNGA120408F Conditions: Vc=200m/min, f=0.1mm/rev, ap=0.1mm, wet

Workpiece: Equivalent to iron metal sintered alloy SMF4040 (70HRB, continuous machining) Old cutting: 2NU-CNGA120408F Conditions: Vc=200m/min, f=0.1mm/rev, ap=0.1mm, wet

Feed-burr relationship

Tool model no. : 3NU-TNGA160404 Cutting conditions : Vc=200m/min, f=0.1mm/rev, ap=0.1mm, wet cutting

	F type	Standard type	T type
A		Burr	rand
В		Damage	

* If Feed is more than 0.1mm/rev, the T type is superior to the standard type in terms of cutting taste and burn can be inhibited.

Recommended cutting edge treatment

Item	TYPE	Honing	Negaland	Angle	
Sharp	FTYPE	_	_	_	
Standard	_	_	0.12	15°	
Reinforced	TTYPE	_	0.12	25°	

% The details may vary according to machining environments.

RA,GA Chip breaker

cBN Chip breaker

Features

- Prevents drag of chip into the workpiece during machining
- Ideal for unmanned automatic operations of the cutting
- The RA chip breaker is for rough boring process
- GA chip breaker is for finishing boring process

Example of use

Applicable area

Grade	DNC350(GA)	Third-party cBN
INSERTS	2NU-CNGM120412-GA	
Parts name (workpiece)	Input Shaft(SCM920 HVSI)	
Vc(m/min)	145	
f(mm/rev)	0.1	
ap(mm)	0.4 ~ 0.5	
Dry/wet cutting	Wet cutting (excellent chip breaking versus rival products)	

Chip Breaker

GA type

Chip breaker suitable for fine boring

RA type

Chip breaker suitable for rough boring

Chip Breaker Features

Superior design fit for chip breaking to induce easy curling

Chip breaker comparison

GA Chip Breaker

V=150m/min f=0.15 mm/rev ap=0.15mm

RA Chip Breaker

V=150m/min f=0.15 mm/rev ap=0.3mm

Applicable area

% The details may vary according to machining environments.

Cutting speed change and tool materials development in history

Making materials faster 2,000 Coated cemented carbide allow 300 Tic-TinN system cermet 200 - 700°c 100 — 200℃ 1,800 Production year

Hardness and intensity of tool materials

Main characteristics of cBN

Main characteristics I of cBN

Main characteristics II of cBN

cBN machining workpieces and advantages of cutting machining

Workpiece	Representative parts	Advantages of cutting machining	Corresponding grade
Heat-treated steel	Transmission gear Driving shaft Shafts Valves Hydraulic parts, etc. • Improved workpiece phenomenon accuracy • Responding to machining of composite parts and micro parts • Machining efficiency improved, grinding/polishing minimized • Investment equipment cost reduced • Environmental measures		DNC100,DNC250 DNC300,DNC350 DNC400 DB1000, DB2000 DBN250, DBN350 DBNX20, DBNX25
Casting	Engine block Cases Brake disks, etc.	Responding to high-speed machining Responding to hard to cut material casting Machining efficiency improved	DBNS800, DBN500 DB7000
Sintered alloy	WT(VTC) parts Various sprocket rotas oil pump parts valve seats • Improved workpiece phenomenon acc • Responding to heat treatment sintered and composite parts • Capacity utilization (longer tool service • High-speed, high-efficiency machining		DBN500 DB7000, DB7500
		Machining efficiency improved Workpiece machining surface roughness improved	DBNX20

Causes of and measures for tool damage

Insert damage type	Causes	Measures
Flank face wear	Insufficient of wear resistance of tool grade Too high cutting speed	 Select high wear resistance grade Decrease cutting speed Reduce to less than Vc 200m/min. (Measures to increase feed and decrease machining distance are effective.) Enlarge clearance angle
Crater wear Crater damage	Insufficient of crater wear resistance of tool grade Too high cutting speed	Change to high-sufficiency machining grade Decrease cutting speed and increase feed (Low speed, high feed) Reduce to less than Vc 200m/min. (Measures to increase feed and decrease machining distance are effective.)
Flaking damage	Insufficient tenacity of tool grade High radial cutting force	 Use high tenacity grade Increase cutting edge strength (Enlarge Negaland angle and perform honing) In case of sufficient tenacity of grade, increase cutting taste
Just prior to corner wear	High stress of boundaries	 Change to grade with strong resistance to corner wear Increase cutting speed (more than 150m/min) Change feed to a regular number of machining Enlarge the Negaland angle and perform honing operation
Previous corner chipping	Great impact on the front cutting edge and large number of times	Change to a grade with high resistance to damage Increase feed (Impact of interruption reduced and chipping inhibited) Enlarge the Negaland angle and perform honing operation
Horizontal corner chipping	Great impact on the horizontal cutting edge and large number of times	 Change to a grade with high resistance to damage Decrease feed Enlarge horizontal cutting edge angle Increase R size Enlarge the Negaland angle and perform honing operation
Crack	• Large heat impact	 In case of wet cutting machining → dry cutting recommended Change to high thermal conductivity grade Decrease Vc, f, ap to reduce machining load
Built up edge	Too low cutting speed Strong affinity of the workpiece with the tool	 Increase cutting speed Select a shape whose slope angle is larger than the workpiece Select a grade whose tenacity is better than the workpiece

Heat-treated steel high-precision machining points

Out of roundness

Perform chucking to apply to the workpiece as equally as possible

Good	Bad

Cylindricity

Perform chucking in the vicinity of machining range

Relationship of chucking pressure and out-of-roundness

Machining conditions

• Machine : General-purpose N/C lathe

• Workpiece : SUJ2 HRC60

• Chuck : 3Jaw • Tool: DBN250 TPGW160404

Cutting condition

- V=150m/min
- f=0.04mm/rev.
- d=0.1mm wet cutting

[※] An appropriate chuck pressure is necessary for an excellent machining.

cBN Wiper insert Shape Wiper edge

Purpose

CT reduction

Tool service life increased

High surface roughness required

Features and performance of wiper insert

(when the surface roughness is the same)

* According to wiper cutting edge, the surface roughness Rz is getting smaller even in case of cutting with the same feed.

Theoretical surface roughness of wiper insert

Based on the wiper effect, surface roughness was increased 3~5 times on the same conditions!

% The details may vary according to machining environments.

cBN cutting edge treatment

CNGA120408F / CNGA120408 / CNGA120408T

I tem	Marking	Heat-treated steel		Cast iron/sintered alloy			
Item	Mai Kiriy	Honing	Negaland width	Negaland angle	Honing	Negaland width	Negaland angle
Sharp	F	0	0.12	15-degree	-	-	_
Standard*	None	0	0.12	25-degree	N/A	0.12	15-degree
Reinforced	Т	0	0.12	35-degree	N/A	0.12	25-degree

- First recommended cutting edge treatment: standard type*
- Apply sharp / reinforcement types according to machining conditions

Adjust Negaland width and angle and honing amount appropriately for machining

Characteristics of cBN honing

- SCM415 Ø10 Inner diameter boring 2NU-CNGA120408 DBNX20
- V=70m/min f=0.03mm/rev d=0.05mm DRY
- · Giving honing increases cutting resistance to weaken machining accuracy but tends to improve surface roughness.

Comparison of cylindricity as per cutting edge shape

Comparison of surface roughness as per cutting edge shape

% The details may vary according to machining environments.

cBN Test comparison - Negaland

The smaller Negaland angle is, the smaller cutting resistance is.

Comparison of cutting resistance

X TEST information

- 1. Cutting conditions:
 - Vc 90m/min
 - fn 0.06mm/rev
 - ap 0.08mm

NL-15

Sharp

- 2. Workpiece : SCM420 (HRC55~57)
- 3. Holder: DCLNR2525
- 4. Insert: CNMA120408 / DBN250

(Standard cutting edge: Negaland angle 25°)

cBN (Effect of Negaland)

Dimensional accuracy

Dimension accuracy increases as the cutting edge angle is getting smaller.

Chipping resistance

Cutting edge strength increases as the cutting edge angle is getting larger.

Surface roughness

Surface roughness decreases as the cutting edge angle is getting larger.

cBN Test comparison - Cutting edge treatment (standard type/F type/T type)

Workpiece (round bar) information			
Size			
Material SCM415			
Heat treated Carburization			
Hardness	HRC58~62		

Insert information 2NU-CNGA120408					
Grade Cutting edge treatment Negaland Honir					
DB1000	Standard type	0.12 X 25°	0.010		
DB1000	F type	0.12 X 15°	0.010		
DB1000	T type	0.12 X 35°	0.010		

Results analysis

- 1. Wear loss: T type > Standard type > F type
- 2. Surface roughness: Standard type > T type > F type
 - With 20 times of machining, surface roughness is machined at 8/12/20 time.
- 3. Remarks:
 - Theoretically, F type (sharp type) is excellent in surface roughness, but under the machining condition of V=200/f=0.1/ ap=0.1, the surface roughness due to initial chipping occurrence of F type is shown inferior.

Comparison of surface roughness						
Grade	8-time machining 12-time machining 20-time machining					
DB1000 Ra 0.431		Ra 0.477	Ra 0.492			
DB1000F	DB1000F Ra 0.629		Ra 0.821			
DB1000T	Ra 0.496	Ra 0.545	Ra 0.584			

cBN Re-grinding

How to select re-grinding

- 1. Check for abnormality or brokenness through inspection
- 2. Classify re-grding according to the size of an inscribed circle

Model No.	New product (before use)	Class B	Class C	Class D
CNMA1204□ □	12.7	12.5	12.3	12.1
DNMA1504□ □	12.7	12.5	12.3	12.1
VNMA1504□ □	9.525	9.4	9.3	9.2
DCGW11T3□ □	9.525	9.3	9.1	X
CCGW09T3□ □	9.525	9.3	9.1	X

Machining example

CNMA120408 -> 0.2mm machined at one time machining

New product (before use): Regrinding 0 time, inscribed circle 12.7mm

12.7

Class C: Regrinding 2 times, inscribed circle 12.3mm

Class B: Regrinding 1 time, inscribed circle 12.5mm

Class D: Regrinding 3 times, inscribed circle 12.1mm

PCD Chip Breaker(UC)

New PCD insert with Chip Breaker

- Productivity improved by resolving chip troubles
- Stable capacity to break chips in the large cutting area
- Excellent in machining aluminium and copper alloys
- Provides very high hardness and excellent wear resistance due to high-density combination of diamond polycrystallines

Performance Comparison Test

- Tool model no.: DCMT11T304-UC
- Workpiece : AL6061 (Ø 100*160L outer dia. boring)
- Cutting conditions: Vc=500m/min, f=0.15mm/rev, ap=0.2mm, dry cutting

Chip Breaker

Applicable area

Shape of chip

- Tool model no.: DCMT11T304-UC
- Workpiece : AL6061 (Ø 100*160L outer dia. boring)
- Cutting conditions: Vc=500m/min dry cutting

Comparison of chip rear discharge

PCD Technical data

PCD Features

DINE PCD products provide very high accuracy and excellent wear resistance as they are manufactured by the ultrahigh temperature and ultrahigh pressure manufacturing process to combine diamond polycrystallines in high density.

Also as the PCD products are based on the diamond crystal particle size control technology by DINE Inc., various workpieces can be machined widely. DINE PCD products provide excellent workpiece surface roughness, high machining accuracy and long tool service life.

- Excellent in machining aluminium alloys and copper alloys
- Excellent in machining ceramic, high Si-aluminium alloy, stone, etc.
- Excellent in machining rubber, carbon, graphite, wood, etc.

PCD Shape

PCD Tool technology guide

- 1. PCD = polycrystalline diamond = particle sintered diamond
- 2. Composition: [diamond crystal grain + diamond additives (metal, ceramic)] sintering by high temperature and pressure (1200°C, 50k atm)
- 3. Particle size: ultrafine particle (0.5μm) 〈 fine-grained particle (10μm) 〈 rough particle (more than 25μm)

- 4. Application: nonferrous metals, glass fiber, woodwork, high-hardness plastic
- 5. Specification
 - 1) rough particle => high density and thermal conductivity excellent wear resistance but weak surface roughness.
 - 2) Cutting edge oxidation occurs in case of machining high-hardness materials at low oxidation temperature

Head Office (15118) 24, MTV 2

[15118] 24, MTV 26-ro, Siheung-si, Gyeonggi-do, Republic of Korea (Jeongwang-dong) | T. +82 031-488-6200 | Call Center. +82 031-1544-0920

Branch Office in China T. +86-532-8588-5907 | E. dine@dinox.com.cn

 $4 th/5 th\ Floor, 88\ Building, Beijing\ Capital\ Airport\ International\ Center,\ No.6 th\ Changchengnan\ Road,\ Chengyang\ District,\ Qingdao,\ Shandong\ Province,\ Chinaland Center,\ No.6 th\ Changchengnan\ Road,\ Chengyang\ District,\ Qingdao,\ Shandong\ Province,\ Chinaland Center,\ No.6 th\ Changchengnan\ Road,\ Chengyang\ District,\ Qingdao,\ Shandong\ Province,\ Chinaland\ Center,\ No.6 th\ Changchengnan\ Road,\ Chengyang\ District,\ Qingdao,\ Shandong\ Province,\ Chinaland\ Center,\ No.6 th\ Changchengnan\ Road,\ Chengyang\ District,\ Qingdao,\ Shandong\ Province,\ Chinaland\ Center,\ No.6 th\ Changchengnan\ Road,\ Chengyang\ District,\ Qingdao,\ Shandong\ Province,\ Chinaland\ Center,\ No.6 th\ Changchengnan\ Road,\ Chengyang\ District,\ Qingdao,\ Shandong\ Province,\ Chinaland\ Center,\ No.6 th\ Changchengnan\ Road,\ Chengyang\ District,\ Qingdao,\ Shandong\ Province,\ Chinaland\ Center,\ No.6 th\ Changchengnan\ Road,\ Chengyang\ District,\ Qingdao,\ Shandong\ Province,\ Chinaland\ Center,\ Chinala$

Branch Office in Vietnam T. +84-24-7300-6991 | E. sales@dine.com.vn

4th Floor, Tower B, Golden Palace Building, Me Tri ward, Nam Tu Liem district, Hanoi, Vietnam

Branch Office in Thailand T.+66-02-108-8911~3 | E. dine.thail@dine.co.kr

1/38 Bangna Thani Building 19B th Floor, Bangna-Trad 34 Alley, Bangna Tai Sub-district, Bangna District, Bangkok 10260

Branch Office in Spain T. +34-911-09-59-35 | E. dms@dine.co.kr Avda. de los Montes de Oca, 19, Nave 3, 28703, San Sebastian de los Reyes, Madrid